Population genomics of adaptive radiations: Exceptionally high levels of genetic diversity and recombination in an endemic spider from the Canary Islands

Author:

Escuer PaulaORCID,Guirao-Rico SaraORCID,Arnedo Miquel A.ORCID,Sánchez-Gracia AlejandroORCID,Rozas JulioORCID

Abstract

AbstractThe spider genusDysderahas undergone a remarkable diversification in the oceanic archipelago of the Canary Islands, ∼60 endemic species originated during the 20 million years since the origin of the archipelago. This evolutionary radiation has been accompanied by substantial dietary shifts, often characterized by phenotypic modifications encompassing morphological, metabolic and behavioral changes. Hence, these endemic spiders represent an excellent model for understanding the evolutionary drivers and to pinpoint the genomic determinants underlying adaptive radiations. Recently, we achieved the first chromosome-level genome assembly of one of the endemic species,D. silvatica,providing a high-quality reference sequence for evolutionary genomics studies. Here, we conducted a low-coverage based resequencing study of a natural population ofD. silvaticafrom La Gomera island. Taking advantage of the new high-quality genome, we characterized genome-wide levels of nucleotide polymorphism, divergence, and linkage disequilibrium, and inferred the demographic history of this population. We also performed comprehensive genome-wide scans for recent positive selection. Our findings uncovered exceptionally high levels of nucleotide diversity and recombination in this geographically restricted endemic species, indicative of large historical effective population sizes. Furthermore, we identified genomic regions potentially under positive selection, shedding light on relevant biological processes, such as vision and nitrogen extraction as possible targets of adaptation and eventually, as drivers of the species diversification. This pioneering study in spiders endemic of an oceanic archipelago lays the groundwork for broader population genomics investigations aimed at understanding the genetic mechanisms driven adaptive radiations in island ecosystems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3