Unraveling Morphogenesis, Starvation, and Light Responses in a Mushroom-Forming Fungus,Coprinopsis cinerea, Using Long Read Sequencing and Extensive Expression Profiling

Author:

Hegedüs BotondORCID,Sahu Neha,Bálint BalázsORCID,Haridas SajeetORCID,Bense Viktória,Merényi ZsoltORCID,Virágh MátéORCID,Wu Hongli,Liu Xiao-BinORCID,Riley RobertORCID,Lipzen AnnaORCID,Koriabine Maxim,Savage Emily,Guo JieORCID,Barry KerrieORCID,Ng Vivian,Urbán PéterORCID,Gyenesei AttilaORCID,Freitag MichaelORCID,Grigoriev Igor V.ORCID,Nagy László G.ORCID

Abstract

AbstractMushroom-forming fungi (Agaricomycetes) are emerging as pivotal players in several fields, as drivers of nutrient cycling, sources of novel applications, and the group includes some of the most morphologically complex multicellular fungi. Genomic data for Agaricomycetes are accumulating at a steady pace, however, this is not paralleled by improvements in the quality of genome sequence and associated functional gene annotations, which leaves gene function notoriously poorly understood in comparison with other fungi and model eukaryotes. We set out to improve our functional understanding of the model mushroomCoprinopsis cinereaby integrating a new, chromosome-level assembly with high-quality gene predictions and functional information derived from gene-expression profiling data across 67 developmental, stress, and light conditions. The new annotation has considerably improved quality metrics and includes 5’- and 3’-untranslated regions (UTRs), polyadenylation sites (PAS), upstream ORFs (uORFs), splicing isoforms, conserved sequence motifs (e.g., TATA and Kozak boxes) and microexons. We found that alternative polyadenylation is widespread inC. cinerea, but that it is not specifically regulated across the various conditions used here. Transcriptome profiling allowed us to delineate core gene sets corresponding to carbon starvation, light-response, and hyphal differentiation, and uncover new aspects of the light-regulated phases of life cycle. As a result, the genome ofC. cinereahas now become the most comprehensively annotated genome among mushroom-forming fungi, which will contribute to multiple rapidly expanding fields, including research on their life history, light and stress responses, as well as multicellular development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3