BlueRecording: A pipeline for the efficient calculation of extracellular recordings in large-scale neural circuit models

Author:

Tharayil Joseph,Blanco Alonso Jorge,Farcito Silvia,Lloyd Bryn,Cassara Antonino,Schürmann Felix,Neufeld Esra,Kuster Niels,Reimann Michael

Abstract

AbstractAs the size and complexity of network simulations accessible to computational neuroscience grows, new avenues open for research into extracellularly recorded electric signals. Biophysically detailed simulations permit the identification of the biological origins of the different components of recorded signals, the evaluation of signal sensitivity to different anatomical, physiological, and geometric factors, and selection of recording parameters to maximize the signal information content. Simultaneously, virtual extracellular signals produced by these networks may become important metrics for neuro-simulation validation. To enable efficient calculation of extracellular signals from large neural network simulations, we have developedBlueRecording, a pipeline consisting of standalone Python code, along with extensions to the Neurodamus simulation control application, the CoreNEURON computation engine, and the SONATA data format, to permit online calculation of such signals. In particular, we implement a general form of the reciprocity theorem, which is capable of handling non-dipolar current sources, such as may be found in long axons and recordings close to the current source, as well as complex tissue anatomy, dielectric heterogeneity, and electrode geometries. To our knowledge, this is the first application of this generalized (i.e., non-dipolar) reciprocity-based approach to simulate EEG recordings. We use these tools to calculate extracellular signals from anin silicomodel of the rat somatosensory cortex and to study signal contribution differences between regions and cell types.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3