Abstract
Electrocorticography (ECoG) methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources are poorly understood. To address this gap, we recorded from rat auditory cortex using customized μECoG, and simulated cortical surface electrical potentials with a full-scale, biophysically detailed cortical column model. Experimentally, μECoG-derived auditory representations were tonotopically organized and signals were anisotropically localized to less than or equal to ±200 μm, that is, a single cortical column. Biophysical simulations reproduce experimental findings and indicate that neurons in cortical layers V and VI contribute ∼85% of evoked high-gamma signal recorded at the surface. Cell number and synchrony were the primary biophysical properties determining laminar contributions to evoked μECoG signals, whereas distance was only a minimal factor. Thus, evoked μECoG signals primarily originate from neurons in the infragranular layers of a single cortical column.SIGNIFICANCE STATEMENTECoG methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources are poorly understood. We investigated the localization and origins of sensory-evoked ECoG responses. We experimentally found that ECoG responses were anisotropically localized to a cortical column. Biophysically detailed simulations revealed that neurons in layers V and VI were the primary sources of evoked ECoG responses. These results indicate that evoked ECoG high-gamma responses are primarily generated by the population spike rate of pyramidal neurons in layers V and VI of single cortical columns and highlight the possibility of understanding how microscopic sources produce mesoscale signals.
Funder
U.S. Department of Energy
HHS | NIH | National Institute of Neurological Disorders and Stroke
Marco Microelectronics Advanced Research Corporation
National Science Foundation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献