DeepES: Deep learning-based enzyme screening to identify orphan enzyme genes

Author:

Hirota KeisukeORCID,Salim FelixORCID,Yamada TakujiORCID

Abstract

AbstractMotivationProgress in sequencing technology has led to determination of large numbers of protein sequences, and large enzyme databases are now available. Although many computational tools for enzyme annotation were developed, sequence information is unavailable for many enzymes, known as orphan enzymes. These orphan enzymes hinder sequence similarity-based functional annotation, leading gaps in understanding the association between sequences and enzymatic reactions.ResultsTherefore, we developed DeepES, a deep learning-based tool for enzyme screening to identify orphan enzyme genes, focusing on biosynthetic gene clusters and reaction class. DeepES uses protein sequences as inputs and evaluates whether the input genes contain biosynthetic gene clusters of interest by integrating the outputs of the binary classifier for each reaction class. The validation results suggested that DeepES can capture functional similarity between protein sequences, and it can be implemented to explore orphan enzyme genes. By applying DeepES to 4744 metagenome-assembled genomes, we identified candidate genes for 236 orphan enzymes, including those involved in short-chain fatty acid production as a characteristic pathway in human gut bacteria.Availability and implementationDeepES is available athttps://github.com/yamada-lab/DeepES. Model weights and the candidate genes are available at Zenodo (https://doi.org/10.5281/zenodo.11123900).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3