The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease

Author:

Carolin Agnes,Frazer David,Yan Kexin,Bishop Cameron R.ORCID,Tang Bing,Nguyen WilsonORCID,Helman Sheridan L.,Horvat Jay,Larcher Thibaut,Rawle Daniel J.,Suhrbier AndreasORCID

Abstract

AbstractThe severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Here we generate iron deficient and iron loaded C57BL/6J mice by feeding low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary omicron XXB SARS-CoV-2 isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.Author summaryA diet deficient in iron can lead to anemia, a widespread problem worldwide. A diet with excessive iron is less common, but can be associated with excessive consumption of iron supplements. We investigate herein using a mouse model, whether low or high iron diets predispose to detrimental outcomes in the lungs after infection with SARS-CoV-2. A considerable literature suggests iron dysregulation would promote infection and inflammation. However, we found, although inflammatory responses showed modest modulations, viral loads were unaffected or slightly reduced, and lung histopathology was either unaffected or indicated slightly less severe disease. These findings do not support a view that low or high iron diets represent comorbidities predisposing to overt detrimental outcomes for acute COVID-19 lung disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3