Sex-focused analyses of M83 A53T hemizygous mouse model with recombinant human alpha-synuclein preformed fibril injection identifies female resilience to disease progression: A combined magnetic resonance imaging and behavioural study

Author:

Tullo StephanieORCID,Park Janice,Gallino Daniel,Park Megan,Mar Kristie,Novikov Vladislav,Sandoval Contreras Rodrigo,Patel Raihaan,del Cid-Pellitero Esther,Fon Edward A.ORCID,Luo Wen,Shlaifer Irina,Durcan Thomas M.,Prado Marco A.M.,Prado Vania F.,Devenyi Gabriel A.,Chakravarty M. Mallar

Abstract

AbstractAlpha-synuclein (aSyn) pathology has been extensively studied in mouse models harbouring human mutations. In spite of the known sex differences in age of onset, prevalence and disease presentation in human synucleinopathies, the impact of sex on aSyn propagation has received very little attention. To address this need, we examined sex differences in whole brain signatures of neurodegeneration due to aSyn toxicity in the M83 mouse model using longitudinal magnetic resonance imaging (MRI; T1-weighted; 100 μm3isotropic voxel; acquired −7, 30, 90 and 120 days post-injection [dpi]; n≥8 mice/group/sex/time point). To initiate aSyn spreading, M83 mice were inoculated with recombinant human aSyn preformed fibrils (Hu-PFF) or phosphate buffered saline (PBS) injected in the right dorsal striatum. We observed more aggressive neurodegenerative profiles over time for male M83 Hu-PFF-injected mice when examining voxel-wise trajectories. However, at 90 dpi, we observed widespread patterns of neurodegeneration in the female Hu-PFF-injected mice. These differences were not accompanied with any differences in motor symptom onset between the male and female Hu-PFF-injected mice. However, male Hu-PFF-injected mice reached their humane endpoint sooner. These findings suggest that post-motor symptom onset, even though more accelerated disease trajectories were observed for male Hu-PFF-injected mice, neurodegeneration may appear sooner in female Hu-PFF-injected mice (prior to motor symptomatology). These findings suggest that sex-specific synucleinopathy phenotypes urgently need to be considered to improve our understanding of neuroprotective and neurodegenerative mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3