Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins

Author:

Nguyen Huy,Ostendorf Adam P,Satz Jakob S,Westra Steve,Ross-Barta Susan E,Campbell Kevin P,Moore Steven A

Abstract

Abstract Background Cobblestone lissencephaly is a severe neuronal migration disorder associated with congenital muscular dystrophies (CMD) such as Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama-type CMD. In these severe forms of dystroglycanopathy, the muscular dystrophy and other tissue pathology is caused by mutations in genes involved in O-linked glycosylation of alpha-dystroglycan. While cerebellar dysplasia is a common feature of dystroglycanopathy, its pathogenesis has not been thoroughly investigated. Results Here we evaluate the role of dystroglycan during cerebellar development. Brain-selective deletion of dystroglycan does not affect overall cerebellar growth, yet causes malformations associated with glia limitans disruptions and granule cell heterotopia that recapitulate phenotypes found in dystroglycanopathy patients. Cerebellar pathology in these mice is not evident until birth even though dystroglycan is lost during the second week of embryogenesis. The severity and spatial distribution of glia limitans disruption, Bergmann glia disorganization, and heterotopia exacerbate during postnatal development. Astrogliosis becomes prominent at these same sites by the time cerebellar development is complete. Interestingly, there is spatial heterogeneity in the glia limitans and granule neuron migration defects that spares the tips of lobules IV-V and VI. Conclusions The full spectrum of developmental pathology is caused by loss of dystroglycan from Bergmann glia, as neither granule cell- nor Purkinje cell-specific deletion of dystroglycan results in similar pathology. These data illustrate the importance of dystroglycan function in radial/Bergmann glia, not neurons, for normal cerebellar histogenesis. The spatial heterogeneity of pathology suggests that the dependence on dystroglycan is not uniform.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3