Modeling Riboswitches: The impact of SAM concentration on the folding of the SAM-II riboswitch

Author:

Alaidi OsamaORCID

Abstract

ABSTRACTSeveral mechanistic (thermodynamic) models have been developed for the folding of SAM-II riboswitch as a function of SAM and magnesium concentrations. For each model, the model parameters (equilibrium constants) have been determined from experimental (apparent) binding data, based on the underlying assumptions of the model. The predicted titration curves computed from the different models were calculated and compared with actual experimental observation of the fraction of the RNA forming a pseudoknot at specific concentration of the ligands. Strikingly, only one of the six models correctly predicts the experimental findings, confirming the dominant mechanism of the riboswitch function. More interestingly, the latter mechanism is found to be the most efficient compared to the other possible mechanisms. The study sheds light on the cognate ligand conformational capture mechanism of the SAM-II riboswitch in the presence of specific concentrations of magnesium ions. The presented mathematical and thermodynamic framework, as well as the inferred equilibrium constants, provide foundations for making accurate quantitative prediction of the SAM-II riboswitch ensemble populations as a function of SAM and magnesium concentrations. The mechanistic linked equilibria model can be generalized to describe other thermodynamically driven riboswitches and hence facilitate identifying RNA intermediates that can be leveraged for small molecule drug design.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3