Statistical signature of subtle behavioural changes in large-scale behavioural assays

Author:

Blanc AlexandreORCID,Laurent FrançoisORCID,Barbier–Chebbah Alex,Cocanougher Benjamin T.ORCID,Jones Benjamin M.W.,Hague PeterORCID,Zlatic MartaORCID,Chikhi RayanORCID,Vestergaard Christian L.ORCID,Jovanic TihanaORCID,Masson Jean-BaptisteORCID,Barré Chloé

Abstract

AbstractThe central nervous system can generate various behaviours, including motor responses, which we can observe through video recordings. Recent advancements in genetics, automated behavioural acquisition at scale, and machine learning enable us to link behaviours to their underlying neural mechanisms causally. Moreover, in some animals, such as theDrosophilalarva, this mapping is possible at unprecedented scales of millions of animals and single neurons, allowing us to identify the neural circuits generating particular behaviours.These high-throughput screening efforts are invaluable, linking the activation or suppression of specific neurons to behavioural patterns in millions of animals. This provides a rich dataset to explore how diverse nervous system responses can be to the same stimuli. However, challenges remain in identifying subtle behaviours from these large datasets, including immediate and delayed responses to neural activation or suppression, and understanding these behaviours on a large scale. We introduce several statistically robust methods for analyzing behavioural data in response to these challenges: 1) A generative physical model that regularizes the inference of larval shapes across the entire dataset. 2) An unsupervised kernel-based method for statistical testing in learned behavioural spaces aimed at detecting subtle deviations in behaviour. 3) A generative model for larval behavioural sequences, providing a benchmark for identifying complex behavioural changes. 4) A comprehensive analysis technique using suffix trees to categorize genetic lines into clusters based on common action sequences. We showcase these methodologies through a behavioural screen focused on responses to an air puff, analyzing data from 280,716 larvae across 568 genetic lines.Author SummaryThere is a significant gap in understanding between the architecture of neural circuits and the mechanisms of action selection and behaviour generation.Drosophilalarvae have emerged as an ideal platform for simultaneously probing behaviour and the underlying neuronal computation [1]. Modern genetic tools allow efficient activation or silencing of individual and small groups of neurons. Combining these techniques with standardized stimuli over thousands of individuals makes it possible to relate neurons to behaviour causally. However, extracting these relationships from massive and noisy recordings requires the development of new statistically robust approaches. We introduce a suite of statistical methods that utilize individual behavioural data and the overarching structure of the behavioural screen to deduce subtle behavioural changes from raw data. Given our study’s extensive number of larvae, addressing and preempting potential challenges in body shape recognition is critical for enhancing behaviour detection. To this end, we have adopted a physics-informed inference model. Our first group of techniques enables robust statistical analysis within a learned continuous behaviour latent space, facilitating the detection of subtle behavioural shifts relative to reference genetic lines. A second array of methods probes for subtle variations in action sequences by comparing them to a bespoke generative model. Together, these strategies have enabled us to construct representations of behavioural patterns specific to a lineage and identify a roster of ”hit” neurons with the potential to influence behaviour subtly.

Publisher

Cold Spring Harbor Laboratory

Reference84 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3