LarvaTagger: manual and automatic tagging of Drosophila larval behaviour

Author:

Laurent François123ORCID,Blanc Alexandre12ORCID,May Lilly14ORCID,Gándara Lautaro5ORCID,Cocanougher Benjamin T678ORCID,Jones Benjamin M W678,Hague Peter678ORCID,Barré Chloé12ORCID,Vestergaard Christian L12ORCID,Crocker Justin5ORCID,Zlatic Marta678ORCID,Jovanic Tihana9ORCID,Masson Jean-Baptiste12ORCID

Affiliation:

1. Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Decision and Bayesian Computation , 75015 Paris, France

2. Épiméthée, INRIA , 75015 Paris, France

3. Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub , F-75015 Paris, France

4. TUM School of Computation, Information and Technology , 80333 Munich, Germany

5. European Molecular Biology Laboratory, Developmental Biology , 69117 Heidelberg, Germany

6. Department of Zoology, University of Cambridge , Cambridge CB2 3EJ, United Kingdom

7. Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, VA 20147, United States

8. MRC Laboratory of Molecular Biology , Cambridge CB2 0QH, United Kingdom

9. Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 9197 , 91400 Saclay, France

Abstract

Abstract Motivation As more behavioural assays are carried out in large-scale experiments on Drosophila larvae, the definitions of the archetypal actions of a larva are regularly refined. In addition, video recording and tracking technologies constantly evolve. Consequently, automatic tagging tools for Drosophila larval behaviour must be retrained to learn new representations from new data. However, existing tools cannot transfer knowledge from large amounts of previously accumulated data. We introduce LarvaTagger, a piece of software that combines a pre-trained deep neural network, providing a continuous latent representation of larva actions for stereotypical behaviour identification, with a graphical user interface to manually tag the behaviour and train new automatic taggers with the updated ground truth. Results We reproduced results from an automatic tagger with high accuracy, and we demonstrated that pre-training on large databases accelerates the training of a new tagger, achieving similar prediction accuracy using less data. Availability and implementation All the code is free and open source. Docker images are also available. See gitlab.pasteur.fr/nyx/LarvaTagger.jl.

Funder

Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3