Abstract
AbstractDespite the success of AlphaFold2 approaches in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and have been challenged to accurately capture of the effects of single point mutations that induced significant structural changes. We systematically examined several implementations of AlphaFold2 methods to predict conformational ensembles for state-switching mutants of the ABL kinase. The results revealed that a combination of randomized alanine sequence masking with shallow multiple sequence alignment subsampling can significantly expand the conformational diversity of the predicted structural ensembles and capture shifts in populations of the active and inactive ABL states. Consistent with the NMR experiments, the predicted conformational ensembles for M309L/L320I and M309L/H415P ABL mutants that perturb the regulatory spine networks featured the increased population of the fully closed inactive state. On the other hand, the predicted conformational ensembles for the G269E/M309L/T334I and M309L/L320I/T334I triple ABL mutants that share activating T334I gate-keeper substitution are dominated by the active ABL form. The proposed adaptation of AlphaFold can reproduce the experimentally observed mutation-induced redistributions in the relative populations of the active and inactive ABL states and capture the effects of regulatory mutations on allosteric structural rearrangements of the kinase domain. The ensemble-based network analysis complemented AlphaFold predictions by revealing allosteric mediating centers that often directly correspond to state-switching mutational sites or reside in their immediate local structural proximity, which may explain the global effect of regulatory mutations on structural changes between the ABL states. This study suggested that attention-based learning of long-range dependencies between sequence positions in homologous folds and deciphering patterns of allosteric interactions may further augment the predictive abilities of AlphaFold methods for modeling of alternative protein sates, conformational ensembles and mutation-induced structural transformations.
Publisher
Cold Spring Harbor Laboratory