The Role of Metabolism in Shaping Enzyme Structures Over 400 Million Years of Evolution

Author:

Lemke OliverORCID,Heineike Benjamin MurrayORCID,Viknander SandraORCID,Cohen NirORCID,Steenwyk Jacob LucasORCID,Spranger Leonard,Li FeiranORCID,Agostini FedericaORCID,Lee Cory Thomas,Aulakh Simran KaurORCID,Nielsen JensORCID,Rokas AntonisORCID,Berman JudithORCID,Zelezniak AleksejORCID,Gossmann Toni IngolfORCID,Ralser MarkusORCID

Abstract

AbstractThe functions of cells and proteins depend on their biochemical microenvironment. To understand how biochemical constraints shaped protein structural evolution, we coupled the extensive genetic and metabolic data from theSaccharomycotinasubphylum with the capability of AlphaFold2 to systematically predict protein structures from sequence. Determining how 11,269 enzyme structures catalysing 361 different metabolic reactions evolved over 400 million years alongside their molecular functions, we report that metabolism has shaped the structural evolution of enzymes at different levels: the organism’s overall metabolism; the topological organisation of the metabolic network; and each enzyme’s molecular properties. For example, structural evolution depends on each enzyme’s reaction mechanism, on the variability rather than the amount of metabolic flux, and on biosynthetic cost. Evolutionary cost-optimization is stronger on highly abundant enzymes and acts differently on different structural domains, with the exception of small-molecule binding sites, which are prioritised over other structural domains and lack cost-optimisation. Finally, while enzyme surfaces are less constrained, surface residues can also be exposed to positive selection for the co-evolution of protein-protein interaction sites. Accessing AlphaFold’s power to predict protein structures systematically and across species barriers, facilitating the integration of protein structures with functional genomics, we were thus able to map biological constraints which shape protein structural evolution at scale and over long timelines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3