Accurate structure prediction of biomolecular interactions with AlphaFold 3

Author:

Abramson JoshORCID,Adler JonasORCID,Dunger Jack,Evans RichardORCID,Green TimORCID,Pritzel AlexanderORCID,Ronneberger OlafORCID,Willmore LindsayORCID,Ballard Andrew J.ORCID,Bambrick JoshuaORCID,Bodenstein Sebastian W.,Evans David A.,Hung Chia-ChunORCID,O’Neill Michael,Reiman DavidORCID,Tunyasuvunakool KathrynORCID,Wu ZacharyORCID,Žemgulytė Akvilė,Arvaniti Eirini,Beattie CharlesORCID,Bertolli OttaviaORCID,Bridgland Alex,Cherepanov AlexeyORCID,Congreve Miles,Cowen-Rivers Alexander I.,Cowie AndrewORCID,Figurnov MichaelORCID,Fuchs Fabian B.,Gladman Hannah,Jain Rishub,Khan Yousuf A.ORCID,Low Caroline M. R.,Perlin Kuba,Potapenko Anna,Savy Pascal,Singh Sukhdeep,Stecula AdrianORCID,Thillaisundaram Ashok,Tong CatherineORCID,Yakneen SergeiORCID,Zhong Ellen D.ORCID,Zielinski Michal,Žídek AugustinORCID,Bapst Victor,Kohli PushmeetORCID,Jaderberg MaxORCID,Hassabis DemisORCID,Jumper John M.ORCID

Abstract

AbstractThe introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2–6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein–ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein–nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody–antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.

Publisher

Springer Science and Business Media LLC

Cited by 491 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3