Diffusion within the synaptonemal complex can account for signal transduction along meiotic chromosomes

Author:

von Diezmann LexyORCID,Bristow Chloe,Rog OferORCID

Abstract

AbstractMeiotic chromosomes efficiently transduce information along their length to regulate the distribution of genetic exchanges within and between chromosomes. However, the mode of signal transduction remains unknown. Recently, a conserved chromosomal interface, the synaptonemal complex, was shown to be a biomolecular condensate, offering an attractive mechanism for signal transduction: diffusion of signaling molecules within the synaptonemal complex to allow transmission of information along each pair of chromosomes. Here, we test the feasibility of this mechanism in liveC. elegansgonads. Single-molecule tracking shows that a component of the synaptonemal complex (SYP-3) and a conserved regulator of exchanges (ZHP-3) both diffuse within the synaptonemal complex. However, ZHP-3 diffuses 4- and 9-fold faster than SYP-3 before and after crossovers formation, respectively. We use these measurements to parameterize a physical model for signal transduction. We find that ZHP-3, but not SYP-3, explores the lengths of chromosomes on the time scale of crossover maturation, consistent with a role in the spatial regulation of exchanges. Given the conservation of ZHP-3 paralogs across eukaryotes, we propose that diffusion within the synaptonemal complex may be a conserved mechanism of meiotic regulation. More broadly, our work explores how diffusion contained within condensates regulates crucial cellular functions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3