THE GENETICS AND MOLECULAR BIOLOGY OF THE SYNAPTONEMAL COMPLEX

Author:

Page Scott L.1,Hawley R. Scott12

Affiliation:

1. Stowers Institute for Medical Research, Kansas City, Missouri 64110;

2. Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045;

Abstract

▪ Abstract  The synaptonemal complex (SC) is a protein lattice that resembles railroad tracks and connects paired homologous chromosomes in most meiotic systems. The two side rails of the SC, known as lateral elements (LEs), are connected by proteins known as transverse filaments. The LEs are derived from the axial elements of the chromosomes and play important roles in chromosome condensation, pairing, transverse filament assembly, and prohibiting double-strand breaks (DSBs) from entering into recombination pathways that involve sister chromatids. The proteins that make up the transverse filaments of the SC also play a much earlier role in committing a subset of DSBs into a recombination pathway, which results in the production of reciprocal meiotic crossovers. Sites of crossover commitment can be observed as locations where the SC initiates and as immunostaining foci for a set of proteins required for the processing of DSBs to mature crossovers. In most (but not all) organisms it is the establishment of sites marking such crossover-committed DSBs that facilitates completion of synapsis (full-length extension of the SC). The function of the mature full-length SC may involve both the completion of meiotic recombination at the DNA level and the exchange of the axial elements of the two chromatids involved in the crossover. However, the demonstration that the sites of crossover formation are designated prior to SC formation, and the finding that these sites display interference, argues against a role of the mature SC in mediating the process of interference. Finally, in at least some organisms, modifications of the SC alone are sufficient to ensure meiotic chromosome segregation in the complete absence of meiotic recombination.

Publisher

Annual Reviews

Subject

Cell Biology,Developmental Biology

Cited by 589 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3