A Comparative Study of Explainability Methods for Whole Slide Classification of Lymph Node Metastases using Vision Transformers

Author:

Rahnfeld Jens,Naouar Mehdi,Kalweit Gabriel,Boedecker Joschka,Dubruc Estelle,Kalweit Maria

Abstract

ABSTRACTRecent advancements in deep learning (DL), such as transformer networks, have shown promise in enhancing the performance of medical image analysis. In pathology, automated whole slide imaging (WSI) has transformed clinical workflows by streamlining routine tasks and diagnostic and prognostic support. However, the lack of transparency of DL models, often described as “black boxes”, poses a significant barrier to their clinical adoption. This necessitates the use of explainable AI methods (xAI) to clarify the decision-making processes of the models. Heatmaps can provide clinicians visual representations that highlight areas of interest or concern for the prediction of the specific model. Generating them from deep neural networks, especially from vision transformers, is non-trivial, as typically their self-attention mechanisms can lead to overconfident artifacts. The aim of this work is to evaluate current xAI methods for transformer models in order to assess which yields the best heatmaps in the histopathological context. Our study undertakes a comparative analysis for classifying a publicly available dataset comprising of N=400 WSIs of lymph node metastases of breast cancer patients. Our findings indicate that heatmaps calculated from Attention Rollout and Integrated Gradients are limited by artifacts and in quantitative performance. In contrast, removal-based methods like RISE and ViT-Shapley exhibit better qualitative attribution maps, showing better results in the well-known interpretability metrics for insertion and deletion. In addition, ViT-Shapley shows faster runtime and the most promising, reliable and practical heatmaps. Incorporating the heatmaps generated from approximate Shapley values in pathology reports could help to integrate xAI in the clinical workflow and increase trust in a scalable manner.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3