Developmental maturation of millimeter-scale functional networks across brain areas

Author:

Powell Nathaniel J.ORCID,Hein BettinaORCID,Kong DeyueORCID,Elpelt JonasORCID,Mulholland Haleigh N.ORCID,Kaschube MatthiasORCID,Smith Gordon B.ORCID

Abstract

AbstractInteracting with the environment to process sensory information, generate perceptions, and shape behavior engages neural networks in brain areas with highly varied representations, ranging from unimodal sensory cortices to higher-order association areas. Recent work suggests a much greater degree of commonality across areas, with distributed and modular networks present in both sensory and non-sensory areas during early development. However, it is currently unknown whether this initially common modular structure undergoes an equally common developmental trajectory, or whether such a modular functional organization persists in some areas—such as primary visual cortex—but not others. Here we examine the development of network organization across diverse cortical regions in ferrets of both sexes usingin vivowidefield calcium imaging of spontaneous activity. We find that all regions examined, including both primary sensory cortices (visual, auditory, and somatosensory—V1, A1, and S1, respectively) and higher order association areas (prefrontal and posterior parietal cortices) exhibit a largely similar pattern of changes over an approximately 3 week developmental period spanning eye opening and the transition to predominantly externally-driven sensory activity. We find that both a modular functional organization and millimeter-scale correlated networks remain present across all cortical areas examined. These networks weakened over development in most cortical areas, but strengthened in V1. Overall, the conserved maintenance of modular organization across different cortical areas suggests a common pathway of network refinement, and suggests that a modular organization—known to encode functional representations in visual areas—may be similarly engaged in highly diverse brain areas.SignificanceDifferent areas of the mature brain encode vastly different representations of the world. This study shows that a modular functional organization where nearby neurons participate in similar functional networks is shared across different brain areas not only during early development, but also as the brain matures where it remains a shared feature that shapes neural activity. The largely conserved trajectory of developmental changes across brain areas suggests that similar circuit mechanisms may drive this maturation. This implies that the large literature on developing cortical circuits, which is largely focused on sensory areas, may also apply more broadly, and that perturbations during development that impinge on any such shared mechanisms may produce deficits that extend across multiple brain systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3