Multi-polygenic prediction of frailty highlights chronic pain and educational attainment as key risk and protective factors

Author:

Flint J PORCID,Welstead M,Cox S RORCID,Russ T CORCID,Marshall A,Luciano MORCID

Abstract

AbstractFrailty is a complex trait. Twin studies and recent Genome-Wide Association Studies have demonstrated a strong genetic basis of frailty but there remains a lack of genetic studies exploring genetic prediction of Frailty. Previous work has shown that a single polygenic predictor – represented by a Frailty polygenic score - predicts Frailty, measured via the frailty index, in independent samples within the United Kingdom. We extended this work, using a multi-polygenic score (MPS) approach to increase predictive power. Predictor variables - twenty-six polygenic scores (PGS) were modelled in regularised Elastic net regression models, with repeated cross-validation, to estimate joint prediction of the polygenic scores and order the predictions by their contributing strength to Frailty in two independent cohorts aged 65+ - the English Longitudinal Study of Ageing (ELSA) and Lothian Birth Cohort 1936 (LBC1936). Results showed that the MPS explained 3.6% and 4.7% of variance compared to the best single-score prediction of 2.6% and 2.2% of variance in ELSA and LBC1936 respectively. The strongest polygenic predictors of worsening frailty came from PGS for Chronic pain, Frailty and Waist circumference; whilst PGS for Parental Death, Educational attainment, and Rheumatoid Arthritis were found to be protective to frailty. Results from the predictors remaining in the final model were then validated using the longitudinal LBC1936, with equivalent PGS scores from the same GWAS summary statistics. Thus, this MPS approach provides new evidence for the genetic contributions to frailty in later life and sheds light on the complex structure of the Frailty Index measurement.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3