Cooperativity of weak actomyosin interaction

Author:

Naskar Aarushi,Johnson Alexis,Nesmelov Yuri E.

Abstract

AbstractWe report the discovery of a new regulatory mechanism of the actomyosin system in muscle. We show that the weak binding of the myosin-nucleotide complex with unregulated F-actin is a cooperative process. Hundreds of myosin heads must work together for efficient force production in muscle, but the precise mechanism by which they coordinate remains elusive. It is known that myosin initially binds actin weakly, then transitions into a strongly bound state to produce force. Using the contiguous cooperative binding model, we interpreted our experimental results in terms of a cooperativity parameter defined as an increased probability for a myosin head to bind to the actin filament next to the already bound head. Considering the geometric organization of a sarcomere, we propose the formation of cross-bridge clusters composed of up to six myosin heads bound consecutively to actin. The cooperativity of weak actomyosin interaction may explain several challenging questions in muscle physiology, such as the role of myosin isoforms in mixed-isoform hybrid muscles, or the yield of supramaximal rate of force production in decorated skinned muscle fibers.Significance StatementForce in striated muscle results from myosin interacting with actin. Initially, myosin attaches weakly to the thin filament, transitioning to a strongly bound state, generating force. Our experiments show high cooperativity in myosin’s weak interaction with unregulated actin filament. This cooperative behavior may facilitate the formation of cross-bridge clusters and the cooperative steps of myosin heads between clusters. Consequently, the thin- and thick-filament regulation could govern the spacing between cross-bridge clusters and influence the probability of a myosin head stepping along the thin filament during force development in muscle.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3