Affiliation:
1. Department of Biochemistry, University of Bristol Medical School, Bristol BS8 1TD, U.K.
Abstract
For the simplest kinetic model the reverse rate constants (k−1 and k−2) associated with ATP binding and cleavage on purified heavy meromyosin and heavy meromyosin subfragment 1 from rabbit skeletal muscle in the presence of 5mm-MgCl2, 50mm-KCl and 20mm-Tris–HCl buffer at pH8.0 and 22°C are: k−1<0.02s−1 and k−1=16s−1. Apparently, higher values of k−1 and k−2 are found with less-purified protein preparations. The values of k−1 and k−2 satisfy conditions required by previous 18O-incorporation studies of H218O into the Pi moiety on ATP hydrolysis and suggest that the cleavage step does involve hydrolysis of ATP or formation of an adduct between ATP and water. The equilibrium constant for the cleavage step at the myosin active site is 9. If the cycle of events during muscle contraction is described by the model proposed by Lymn & Taylor (1971), the fact that there is only a small negative standard free-energy change for the cleavage step is advantageous for efficient chemical to mechanical energy exchange during muscle contraction.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
273 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献