Tensor decomposition- and principal component analysis-based unsupervised feature extraction to select more reasonable differentially expressed genes: Optimization of standard deviation versus state-of-art methods

Author:

Taguchi Y-h.ORCID,Turki TurkiORCID

Abstract

AbstractBackgroundTensor decomposition- and principal component analysis-based unsupervised feature extraction were proposed almost 5 and 10 years ago, respectively; although these methods have been successfully applied to a wide range of genome analyses, including drug repositioning, biomarker identification, and disease-causing genes’ identification, some fundamental problems have been identified: the number of genes identified was too small to assume that there were no false negatives, and the histogram of P-values derived was not fully coincident with the null hypothesis that principal component and singular value vectors follow the Gaussian distribution.ResultsOptimizing the standard deviation such that the histogram of P-values is as much as possible coincident with the null hypothesis results in an increase in the number and biological reliability of the selected genes.ConclusionsTensor decomposition- and principal component analysis-based unsupervised feature extraction are perhaps better than state-of-art methods in regard to predicting differentially expressed genes because they achieve the desired property that the less expressed differentially expressed genes should be less likely selected or even associated with the same amount of logarithmic fold change, although they assume neither negative binomial distribution nor dispersion relation, which is usually assumed in state-of-art methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3