Species richness and community structure of bats along a forest elevational transect in Papua New Guinea

Author:

Sivault EliseORCID,Amick Pita K.,Armstrong Kyle N.ORCID,Novotny VojtechORCID,Sam KaterinaORCID

Abstract

ABSTRACTOver the past decades, elevational gradients have become a powerful tool with which to understand the underlying cause(s) of biodiversity. The Mt. Wilhelm elevational transect is one such example, having been used to study the birds, insects, and plants of Papua New Guinea (PNG). However, a survey of mammals from this forest elevational transect was lacking. We thus aimed to investigate patterns in the community structure and species richness of bats (Chiroptera) along the transect, link the species to available regional data, and explain the observed patterns by including environmental characteristics. Bat communities were surveyed between 200 m and a timberline at 3,700 m a.s.l. at eight study sites separated by 500 m in elevation. We conducted mist-netting and acoustic surveys to detect and identify species at each site. Regional data were compiled to compare local with regional diversity. Finally, biotic (i.e., food availability, habitat features) and abiotic (i.e., mean daily temperature, available land area) factors were included in our analyses to disentangle the ecological drivers underlying bat diversity. Results revealed that species richness decreases with ascending elevation and was best explained by a corresponding decrease in both area and temperature. We also observed community turnover along the transect at local and regional scales, along with the increase of species’ elevational ranges. Consequently, despite that the study was restricted to one mountain in PNG, it demonstrates how basic inventory surveys can be used to address ecological questions in other similar and undisturbed tropical mountains.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3