Abstract
AbstractObjectiveHigh-density surface electromyography (HD-sEMG) allows the reliable identification of individual motor unit (MU) action potentials. Despite the accuracy in decomposition, there is a large variability in the number of identified MUs across individuals and exerted forces. Here we present a systematic investigation of the anatomical and neural factors that determine this variability.ApproachWe investigated factors of influence on HD-sEMG decomposition, such as synchronization of MU discharges, distribution of MU territories, muscle-electrode distance (MED - subcutaneous fat thickness), maximum anatomical cross-sectional area (ACSAmax), and fiber CSA. For this purpose, we recorded HD-sEMG signals, ultrasound, magnetic resonance imaging, and muscle biopsy of the biceps brachii muscle from two groups of participants – untrained-controls (UT=14) and strength-trained (>3 years of training, ST=16) – while they performed isometric ramp contractions with elbow flexors (at 15, 35, 50 and 70% maximum voluntary torque - MVT). We assessed the correlation between the number of accurately detected MUs by HD-sEMG decomposition and each measured parameter, for each target force level. Multiple regression analysis was then applied.Main resultsST subjects showed lower MED (UT: 4.8 ± 1.4 vs. ST: 3.7 ± 0.8 mm) associated to a greater number of identified motor units (UT: 21.3 ± 10.2 vs. ST: 29.2 ± 11.8 MUs/subject). Both groups showed a negative correlation between MED and the number of identified MUs at low forces (r= −0.6, p=0.002 at 15% MVT). Moreover, the number of identified MUs was positively correlated to the distribution of MU territories (r=0.56, p=0.01) and ACSAmax (r=0.48, p=0.03) at 15% MVT. By accounting for all anatomical parameters, we were able to partly predict the number of decomposed MUs at low but not at high forces.SignificanceOur results confirmed the influence of subcutaneous tissue on the quality of HD-sEMG signals and demonstrated that MU spatial distribution and ACSAmax are also relevant parameters of influence for current decomposition algorithms.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sex differences in motor unit behaviour: A review;Journal of Electromyography and Kinesiology;2022-10