Abstract
Abstract
Objective. Non-invasive electromyographic techniques can detect action potentials from muscle units with high spatial dimensionality. These technologies allow the decoding of large samples of motor units by using high-density grids of electrodes that are placed on the skin overlying contracting muscles and therefore provide a non-invasive representation of the human spinal cord output. Approach. From a sample of >1200 decoded motor neurons, we show that motor neuron activity can be identified in humans in the full muscle recruitment range with high accuracy. Main results. After showing the validity of decomposition with novel test parameters, we demonstrate that the same motor neurons can be tracked over a period of one-month, which allows for the longitudinal analysis of individual human neural cells. Significance. These results show the potential of an accurate and reliable assessment of large populations of motor neurons in physiological investigations. We discuss the potential of this non-invasive neural interfacing technology for the study of the neural determinants of movement and man-machine interfacing.
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献