Competition contributes to both warm and cool range edges

Author:

Lyu ShengmanORCID,Alexander Jake M.ORCID

Abstract

AbstractCompetition plays an important role in shaping species’ spatial distributions. However, it remains unclear where and how competition regulates species’ range limits. In a field experiment with plants originating from low and high elevations and conducted across an elevation gradient in the Swiss Alps, we find that both lowland and highland species can better persist in the presence of competition within than beyond their elevation ranges, suggesting that competition helps set both lower and upper elevation range limits of these species. Furthermore, the reduced ability of pairs of lowland or highland species to coexist beyond their range edges is mainly driven by diminishing niche differences; changes in both niche differences and relative fitness differences drive weakening competitive dominance of lowland over highland species with increasing elevation. These results highlight the need to account for competitive interactions and investigate underlying coexistence mechanisms to understand current and future species distributions.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Darwin C. On the Origin of species. London: British Museum Natural History Cambridge: Cambridge University Press (1859).

2. MacArthur RH. Geographical ecology: patterns in the distribution of species. Harper & Row (1972).

3. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling

4. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives

5. Are Species’ Range Limits Simply Niche Limits Writ Large? A Review of Transplant Experiments beyond the Range

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3