Abstract
AbstractNavigation of microrobots in living vasculatures is essential in realizing targeted drug delivery and advancing non-invasive surgeries. We developed acoustically-controlled “swarmbots” based on the self-assembly of clinically-approved microbubbles. Ultrasound is noninvasive, penetrates deeply into the human body, and is well-developed in clinical settings. Our propulsion strategy relies in two forces: the primary radiation force and secondary Bjerknes force. Upon ultrasound activation, the microbubbles self-assemble into microswarms, which migrate towards and anchor at the containing vessel’s wall. A second transducer, which produces an acoustic field parallel to the channel, propels the swarms along the wall. We demonstrated cross- and upstream navigation of the swarmbots at 3.27 mm/s and 0.53 mm/s, respectively, against physiologically-relevant flow rates of 4.2 – 16.7 cm/s. Additionally, we showed swarm controlled manipulation within mice blood and under pulsatile flow conditions of 100 beats per minute. This capability represents a much-needed pathway for advancing preclinical research.TeaserNavigation of ultrasound-guided microrobots inside artificial blood vessels overcoming physiological conditions, including high flow rates, pulsatile flow regimes, and high cell concentrations of blood.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献