Navigation of Ultrasound-controlled Swarmbots under Physiological Flow Conditions

Author:

Fonseca Alexia D.C.ORCID,Kohler Tobias,Ahmed Daniel

Abstract

AbstractNavigation of microrobots in living vasculatures is essential in realizing targeted drug delivery and advancing non-invasive surgeries. We developed acoustically-controlled “swarmbots” based on the self-assembly of clinically-approved microbubbles. Ultrasound is noninvasive, penetrates deeply into the human body, and is well-developed in clinical settings. Our propulsion strategy relies in two forces: the primary radiation force and secondary Bjerknes force. Upon ultrasound activation, the microbubbles self-assemble into microswarms, which migrate towards and anchor at the containing vessel’s wall. A second transducer, which produces an acoustic field parallel to the channel, propels the swarms along the wall. We demonstrated cross- and upstream navigation of the swarmbots at 3.27 mm/s and 0.53 mm/s, respectively, against physiologically-relevant flow rates of 4.2 – 16.7 cm/s. Additionally, we showed swarm controlled manipulation within mice blood and under pulsatile flow conditions of 100 beats per minute. This capability represents a much-needed pathway for advancing preclinical research.TeaserNavigation of ultrasound-guided microrobots inside artificial blood vessels overcoming physiological conditions, including high flow rates, pulsatile flow regimes, and high cell concentrations of blood.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3