Coated microbubbles swim via shell buckling

Author:

Chabouh GeorgesORCID,Mokbel Marcel,van Elburg Benjamin,Versluis MichelORCID,Segers TimORCID,Aland SebastianORCID,Quilliet Catherine,Coupier GwennouORCID

Abstract

AbstractEngineered microswimmers show great promise in various biomedical applications. However, their application is hindered by the slow mobility, limited maneuverability and poor biocompatibility. Lipid coated microbubbles have high compressibility and are already approved for clinical use as diagnostic ultrasound contrast agents. Here we experimentally investigate the swimming motion of these microbubbles under external cyclic overpressure. A net displacement was generated via reproducible and non-destructive cycles of deflation and re-inflation of the microbubble. We also propose a numerical model which allows a maximum swimming speed on the order of meters per second, which falls in the range of blood flow velocity in large vessels. Unlike the acoustic radiation force technique, where the displacement is always directed along the axis of ultrasound propagation, here, the direction of propulsion is controlled in the shell reference frame. This provides a solution toward controlled steering for ultrasound molecular imaging and drug delivery.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3