Author:
Srivastava Malvika,Payne Joshua L.
Abstract
ABSTRACTThe mapping from genotype to phenotype to fitness typically involves multiple nonlinearities that can transform the effects of mutations. For example, mutations may contribute additively to a phenotype, but their effects on fitness may combine non-additively because selection favors a low or intermediate value of that phenotype. This can cause incongruence between the topographical properties of a fitness landscape and its underlying genotype-phenotype landscape. Yet, genotype-phenotype landscapes are often used as a proxy for fitness landscapes to study the dynamics and predictability of evolution. Here, we use theoretical models and empirical data on transcription factor-DNA interactions to systematically study the incongruence of genotype-phenotype and fitness landscapes when selection favors a low or intermediate phenotypic value. Using the theoretical models, we prove a number of fundamental results. For example, selection for low or intermediate phenotypic values does not change simple sign epistasis into reciprocal sign epistasis, yet it changes reciprocal sign epistasis into simple sign epistasis and no sign epistasis with equal probability. More broadly, we show that such selection tends to create fitness landscapes that are more rugged than the underlying genotype-phenotype landscape, but this increased ruggedness typically does not frustrate adaptive evolution because the local adaptive peaks in the fitness landscape tend to be nearly as tall as the global peak. Many of these results carry forward to the empirical genotype-phenotype landscapes, which may help to explain why low- and intermediate-affinity transcription factor-DNA interactions are so prevalent in eukaryotic gene regulation.AUTHOR SUMMARYHow do mutations change phenotypic traits and organismal fitness? This question is often addressed in the context of a classic metaphor of evolutionary theory — the fitness landscape. A fitness landscape is akin to a physical landscape, in which genotypes define spatial coordinates, and fitness defines the elevation of each coordinate. Evolution then acts like a hill-climbing process, in which populations ascend fitness peaks as a consequence of mutation and selection. It is becoming increasingly common to construct such landscapes using experimental data from high-throughput sequencing technologies and phenotypic assays, in systems such as macromolecules and gene regulatory circuits. Although these landscapes are typically defined by molecular phenotypes, and are therefore more appropriately referred to as genotype-phenotype landscapes, they are often used to study evolutionary dynamics. This requires the assumption that the molecular phenotype is a reasonable proxy for fitness, which need not be the case. For example, selection may favor a low or intermediate phenotypic value, causing incongruence between a fitness landscape and its underlying genotype-phenotype landscape. Here, we study such incongruence using a diversity of theoretical models and experimental data from gene regulatory systems. We regularly find incongruence, in that fitness landscapes tend to comprise more peaks than their underlying genotype-phenotype landscapes. However, using evolutionary simulations, we show that this increased ruggedness need not impede adaptation.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献