Functional stemness-related genes revealed by single-cell profiling of naïve and stimulated human CD34+ cells from CB and mPB

Author:

Dong Guoyi,Xu Xiaojing,Li Yue,Ouyang Wenjie,Zhao Weihua,Gu YingORCID,Li Jie,Liu Tianbin,Zeng Xinru,Zou Huilin,Wang Shuguang,Liu Sixi,Sun Hai-Xi,Liu Chao

Abstract

AbstractHematopoietic stem cells (HSCs) from different sources show varied repopulating capacity, and HSCs lose their stemness after long-time ex vivo culture. However, the underlying mechanisms of the stemness differences because of the cell sources and the culture stimulation are not fully understood. Here, we applied single-cell RNA-seq (scRNA-seq) to analyze the naïve and stimulated human CD34+ cells from cord blood (CB) and mobilized peripheral blood (mPB). We collected over 16,000 single-cell data to construct a comprehensive trajectory inference map and characterized the HSCs population on the hierarchy top, which is under quiescent state. Then we compared HSCs in CB to those in mPB and HSCs of naïve samples to those of cultured samples, and identified stemness-related genes (SRGs) associated with culture time (CT-SRGs) and cell source (CS-SRGs), respectively. Interestingly, CT-SRGs and CS-SRGs share genes enriched in the signaling pathways such as mRNA catabolic process, Translational initiation, Ribonucleoprotein complex biogenesis and Cotranslational protein targeting to membrane, suggesting dynamic protein translation and processing may be a common requirement for stemness maintenance. Meanwhile, CT-SRGs are enriched in pathways involved in glucocorticoid and corticosteroid response that affect HSCs homing and engraftment. In contrast, CS-SRGs specifically contain genes related purine and ATP metabolic process which is important to initiate hematopoiesis. Finally, we presented an application through a small-scale drug screening using Connectivity Map (CMap) against CT-SRGs and found a small molecule cucurbitacin I, targeting STAT3/JAK2, can efficiently expand HSCs ex vivo while maintaining its stemness. These results indicate SRGs revealed by scRNA-seq can provide helpful insights to understand the stemness differences under diverse circumstances, and CT-SRGs can be a valuable database to identify candidates enhancing functional HSCs expansion during ex vivo culture.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3