Comparative analysis of cell-cell communication at single-cell resolution

Author:

Wilk Aaron J.ORCID,Shalek Alex K.ORCID,Holmes SusanORCID,Blish Catherine A.ORCID

Abstract

ABSTRACTInference of cell-cell communication (CCC) from single-cell RNA-sequencing data is a powerful technique to uncover putative axes of multicellular coordination, yet existing methods perform this analysis at the level of the cell type or cluster, discarding single-cell level information. Here we present Scriabin – a flexible and scalable framework for comparative analysis of CCC at single-cell resolution. We leverage multiple published datasets to show that Scriabin recovers expected CCC edges and use spatial transcriptomic data, genetic perturbation screens, and direct experimental manipulation of receptor-ligand interactions to validate that the recovered edges are biologically meaningful. We then apply Scriabin to uncover co-expressed programs of CCC from atlas-scale datasets, validating known communication pathways required for maintaining the intestinal stem cell niche and revealing species-specific communication pathways. Finally, we utilize single-cell communication networks calculated using Scriabin to follow communication pathways that operate between timepoints in longitudinal datasets, highlighting bystander cells as important initiators of inflammatory reactions in acute SARS-CoV-2 infection. Our approach represents a broadly applicable strategy to leverage single-cell resolution data maximally toward uncovering CCC circuitry and rich niche-phenotype relationships in health and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3