MultiNicheNet: a flexible framework for differential cell-cell communication analysis from multi-sample multi-condition single-cell transcriptomics data

Author:

Browaeys RobinORCID,Gilis JeroenORCID,Sang-Aram ChananchidaORCID,De Bleser PieterORCID,Hoste LeviORCID,Tavernier SimonORCID,Lambrechts DietherORCID,Seurinck RuthORCID,Saeys YvanORCID

Abstract

AbstractDysregulated cell-cell communication is a hallmark of many disease phenotypes. Due to recent advances in single-cell transcriptomics and computational approaches, it is now possible to study intercellular communication on a genome- and tissue-wide scale. However, most current cell-cell communication inference tools have limitations when analyzing data from multiple samples and conditions. Their main limitation is that they do not address inter-sample heterogeneity adequately, which could lead to false inference. This issue is crucial for analyzing human cohort scRNA-seq datasets, complicating the comparison between healthy and diseased subjects.Therefore, we developed MultiNicheNet (https://github.com/saeyslab/multinichenetr), a novel framework to better analyze cell-cell communication from multi-sample multi-condition single-cell transcriptomics data. The main goals of MultiNicheNet are inferring the differentially expressed and active ligand-receptor pairs between conditions of interest and predicting the putative downstream target genes of these pairs. To achieve this goal, MultiNicheNet applies the principles of state-of-the-art differential expression algorithms for multi-sample scRNA-seq data. As a result, users can analyze differential cell-cell communication while adequately addressing inter-sample heterogeneity, handling complex multifactorial experimental designs, and correcting for batch effects and covariates. Moreover, MultiNicheNet uses NicheNet-v2, our new and substantially improved version of NicheNet’s ligand-receptor network and ligand-target prior knowledge model.We applied MultiNicheNet to patient cohort data of several diseases (breast cancer, squamous cell carcinoma, multisystem inflammatory syndrome in children, and lung fibrosis). For these diseases, MultiNicheNet uncovered known and novel aberrant cell-cell signaling processes. We also demonstrated MultiNicheNet’s potential to perform non-trivial analysis tasks, such as studying between- and within-group differences in cell-cell communication dynamics in response to therapy. As a final example, we used MulitNicheNet to elucidate dysregulated intercellular signaling in idiopathic pulmonary fibrosis while correcting batch effects in integrated atlas data.Given the anticipated increase in multi-sample scRNA-seq datasets due to technological advancements and extensive atlas-building integration efforts, we expect that MultiNicheNet will be a valuable tool to uncover differences in cell-cell communication between healthy and diseased states.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3