Bayesian inference of phylogeny is robust to substitution model over-parameterization

Author:

Fabreti Luiza Guimarães,Höhna SebastianORCID

Abstract

AbstractModel selection aims to choose the most adequate model for the statistical analysis at hand. The model must be complex enough to capture the complexity of the data but should be simple enough to not overfit. In phylogenetics, the most common model selection scenario concerns selecting an appropriate substitution and partition model for sequence evolution to infer a phylogenetic tree. Here we explored the impact of substitution model over-parameterization in a Bayesian statistical framework. We performed simulations under the simplest substitution model, the Jukes-Cantor model, and compare posterior estimates of phylogenetic tree topologies and tree length under the true model to the most complex model, the GTR+Γ+I substitution model, including over-splitting the data into additional subsets (i.e., applying partitioned models). We explored four choices of prior distributions: the default substitution model priors of MrBayes, BEAST2 and RevBayes and a newly devised prior choice (Tame). Our results show that Bayesian inference of phylogeny is robust to substitution model over-parameterization but only under our new prior settings. All three default priors introduced biases for the estimated tree length. We conclude that substitution and partition model selection are superfluous steps in Bayesian phylogenetic inference pipelines if well behaved prior distributions are applied.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3