Cryomilling Tethered Chromatin Conformation Capture reveal new insights into inter-chromosomal interactions

Author:

Xu JiangORCID,Kumar Sanjeev,Hua Nan,Kou Yi,Lei Xiao,Rout Michael P.ORCID,Aitchison John D.,Alber Frank,Chen Lin

Abstract

AbstractTraditional methods used to map the three-dimensional organization of chromatin in-situ generally involve chromatin conformation capture by formaldehyde crosslinking, followed by detergent solubilization and enzymatic digestion of DNA. Ligation of proximal DNA fragments followed by next generation sequencing (NGS) generates contact information that enables a global view of the chromatin conformation. Here, we explore the use of cryomilling to physically fragmentize the cells under cryogenic conditions to probe chromatin interactions in the cryomilled cell fragments by the tethered chromatin conformation capture (TCC). Our results show that cryomilling TCC (CTCC) can generate a global contact map similar to that obtained with in-situ Hi-C. This result suggests that summation of chromatin interactions mapped in individual subcellular fragments can reconstitute the global contact map of intact cells in an ensemble manner, paving the way for chromatin conformation analyses of solid tissue by CTCC. Compared with the conventional in-situ methods such as Hi-C, CTCC shows more uniform access to different subcompartments of the folded genome. On the other hand, most inter-chromosomal (trans) contacts are diminished or lost in CTCC except for a group of unique trans contacts that remain intact throughout the cryomilling and in- vitro crosslinking steps. These apparently ultra-stable trans interactions have much enhanced signal in CTCC due to the elimination of signals of most, presumably weak and transient trans interactions. Systematic and comparative analyses between CTCC and in-situ Hi-C provide further insights into the chromatin structure organization and reveal a generally unentangled chromosome interface and the existence of stable inter-chromosomal contacts that may represent intermingled inter-chromosomal interfaces.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technological advances in probing 4D genome organization;Current Opinion in Cell Biology;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3