Chromosome-scale genome assembly of the diploid oat Avena longiglumis reveals the landscape of repetitive sequences, genes and chromosome evolution in grasses

Author:

Liu QingORCID,Yuan Hongyu,Li Mingzhi,Wang Ziwei,Cui Dongli,Ye Yushi,Sun Zongyi,Tan Xukai,Schwarzacher Trude,Heslop-Harrison John SeymourORCID

Abstract

AbstractBackgroundOat (Avena sativa, 2n=6x=42) is an important crop, and with its wild relatives including A. longiglumis (ALO, 2n=6x=14), has advantageous agronomic and nutritional traits. A de-novo chromosome-level ALO genome assembly was made to investigate diversity and structural genome variation between Avena species and other Poaceae in an evolutionary context, and develop genomic resources to identify the pangenome and economic traits within Pooideae.ResultsThe 3.85 gigabase ALO genome (seven pseudo-chromosomes), contained 40,845 protein-coding genes and 87% repetitive sequences (84.21% transposable elements). An LTR retrotransposon family was abundant at all chromosome centromeres, and genes were distributed without major terminal clusters. Comparisons of synteny with A. eriantha and A. strigosa showed evolutionary translocations of terminal segments including many genes. Comparison with rice (x=12) and the ancestral grass karyotype showed synteny and features of chromosome evolution including fusions, translocations and insertions of syntenic blocks across Pooideae species. With a genome size 10 times larger than rice, ALO showed relatively uniform expansion along the chromosome arms, with few gene-poor regions along arms, and no major duplications nor deletions. Linked gene networks were identified (mixed-linkage glucans and cellulose synthase genes), and CYP450 genes may be related to salt-tolerance.ConclusionsThe high-continuity genome assembly shows gene, chromosomal structural and copy number variation, providing a reference for the Avena pangenome, defining the full spectrum of diversity. Chromosomal rearrangements and genome expansion demonstrate features of evolution across the genus and grass BOP-clade, contributing to exploitation of gene and genome diversity through precision breeding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3