P-element repressor autoregulation involves germ-line transcriptional repression and reduction of third intron splicing.

Author:

Roche S E,Schiff M,Rio D C

Abstract

P cytotype is a regulatory state, characteristic of Drosophila P-strain females, in which P-element transposition is repressed. P cytotype is established maternally in the germ line but is also dependent on the presence of P elements in the zygote. One aspect of P cytotype involves transcriptional repression of the P-element promoter. Here, we show that transcriptional repression by P cytotype in the female germ line occurs by a general promoter-independent mechanism with heterologous promoters carried in P-element vectors. P-cytotype transcriptional repression results in low levels of pre-mRNA and a reduction in splicing of the P-element third intron (IVS3)-containing mRNA, thus causing an increase in the proportion of 66-kD repressor mRNA. Increased retention of IVS3 in P cytotype would result in an autoregulatory loop of 66-kD repressor production. This combination of germ-line transcriptional repression and splicing control provides a mechanism to maintain repression during the maternal inheritance of P cytotype. These findings suggest that transcriptional repression may play an additional role in the regulation of gene expression, namely allowing alteration of pre-mRNA splicing patterns.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference52 articles.

1. Ashburner, M. 1989. Drosophila: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

2. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds. 1987. Current protocols in molecular biology. Greene/John Wiley, New York.

3. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts.

4. KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster.;EMBO J.,1987

5. The SNF/SWI family of global transcriptional activators

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3