A burst of transposon expression accompanies the activation of Y chromosome fertility genes during Drosophila spermatogenesis

Author:

Lawlor Matthew A.ORCID,Cao Weihuan,Ellison Christopher E.ORCID

Abstract

AbstractTransposable elements (TEs) must replicate in germline cells to pass novel insertions to offspring. In Drosophila melanogaster ovaries, TEs can exploit specific developmental windows of opportunity to evade host silencing and increase their copy numbers. However, TE activity and host silencing in the distinct cell types of the Drosophila melanogaster testis are not well understood. We reanalyzed publicly available single-cell RNA-seq datasets to quantify TE expression in the distinct cell types of the Drosophila testis. We developed a novel method for identification of TE and host gene expression programs and find that a distinct population of early spermatocytes expresses a large number of TEs at much higher levels than other germline and somatic components of the testes. This burst of TE expression coincides with the activation of Y chromosome fertility factors and spermatocyte-specific transcriptional regulators, as well as downregulation of many components of the piRNA pathway. The TEs expressed by this cell population are enriched on the Y chromosome and depleted on the X chromosome relative to other active TEs. These data suggest that some TEs may achieve high insertional activity in males by exploiting a window of opportunity for mobilization created by the activation of spermatocyte-specific and Y-chromosome-specific transcriptional programs.

Publisher

Cold Spring Harbor Laboratory

Reference83 articles.

1. Stellate Genes and the PiRNA Pathway in Speciation and Reproductive Isolation of Drosophila Melanogaster;Frontiers in Genetics,2020

2. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration

3. The Y Chromosome as a Battleground for Intragenomic Conflict;Trends in Genetics: TIG,2020

4. Repbase Update, a Database of Repetitive Elements in Eukaryotic Genomes;Mobile DNA,2015

5. Discovery of tMAC: a Drosophila testis-specific meiotic arrest complex paralogous to Myb–Muv B

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3