A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection

Author:

Crook Oliver M.ORCID,Geladaki AikateriniORCID,Nightingale Daniel J.H.ORCID,Vennard OwenORCID,Lilley Kathryn S.ORCID,Gatto LaurentORCID,Kirk Paul D.W.ORCID

Abstract

AbstractThe cell is compartmentalised into complex micro-environments allowing an array of specialised biological processes to be carried out in synchrony. Determining a protein’s sub-cellular localisation to one or more of these compartments can therefore be a first step in determining its function. High-throughput and high-accuracy mass spectrometry-based sub-cellular proteomic methods can now shed light on the localisation of thousands of proteins at once. Machine learning algorithms are then typically employed to make protein-organelle assignments. However, these algorithms are limited by insufficient and incomplete annotation. We propose a semi-supervised Bayesian approach to novelty detection, allowing the discovery of additional, previously unannotated sub-cellular niches. Inference in our model is performed in a Bayesian framework, allowing us to quantify uncertainty in the allocation of proteins to new sub-cellular niches, as well as in the number of newly discovered compartments. We apply our approach across 10 mass spectrometry based spatial proteomic datasets, representing a diverse range of experimental protocols. Application of our approach to hyper LOPIT datasets validates its utility by recovering enrichment with chromatin-associated proteins without annotation and uncovers sub-nuclear compartmentalisation which was not identified in the original analysis. Moreover, using sub-cellular proteomics data from Saccharomyces cerevisiae, we uncover a novel group of proteins trafficking from the ER to the early Golgi apparatus. Overall, we demonstrate the potential for novelty detection to yield biologically relevant niches that are missed by current approaches.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3