Competitive state of actions during planning predicts sequence execution accuracy

Author:

Mantziara Myrto,Ivanov Tsvetoslav,Houghton George,Kornysheva KatjaORCID

Abstract

SummaryHumans can learn and retrieve novel skilled movement sequences from memory, yet the content and structure of sequence planning are not well understood. Previous computational and neurophysiological work suggests that actions in a sequence are planned as parallel graded activations and selected for output through competition (competitive queuing; CQ). However, the relevance of CQ during planning to sequence fluency and accuracy, as opposed to sequence timing, is unclear. To resolve this question, we assessed the competitive state of constituent actions behaviourally during sequence preparation. In three separate multi-session experiments, 55 healthy participants were trained to retrieve and produce 4-finger sequences with particular timing from long-term memory. In addition to sequence production, we evaluated reaction time (RT) and error rate increase to constituent action probes at several points during the preparation period. Our results demonstrate that longer preparation time produces a steeper CQ activation and selection gradient between adjacent sequence elements, whilst no effect was found for sequence speed or temporal structure. Further, participants with a steeper CQ gradient tended to produce correct sequences faster and with a higher temporal accuracy. In a computational model, we hypothesize that the CQ gradient during planning is driven by the width of acquired positional tuning of each sequential item, independently of timing. Our results suggest that competitive activation during sequence planning is established gradually during sequence planning and predicts sequence fluency and accuracy, rather than the speed or temporal structure of the motor sequence.HighlightsPre-ordering of actions during sequence planning can be assessed behaviourallyCompetitive gradient reflects sequence preparedness and skill, but not speed or timingGradient is retrieved rapidly and revealed during automatic action selectionPositional tuning of actions boosts the competitive gradient during planning

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. Rosenbaum, D.A. (1984). Motor Programming. Massachsetts Inst. Technol. Cambridge, MA.

2. Lashley, K. (1951). The problem of serial order in behavior. In Cerebral mechanisms in behavior. Wiley 112–131

3. Sequence learning is driven by improvements in motor planning;J. Neurophysiol,2019

4. A Dynamical Systems Perspective on Flexible Motor Timing

5. Houghton, G. (1990). The problem of serial order: A neural network model of sequence learning and recall. In Current Research in Natural Language Generation, pp. 287–319.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3