Sensory Attenuation of the Auditory P2 Differentiates Self- from Partner-Produced Sounds during Joint Action

Author:

Bolt Nicole K.1ORCID,Loehr Janeen D.1ORCID

Affiliation:

1. University of Saskatchewan

Abstract

Abstract Successful human interaction relies on people's ability to differentiate between the sensory consequences of their own and others' actions. Research in solo action contexts has identified sensory attenuation, that is, the selective perceptual or neural dampening of the sensory consequences of self-produced actions, as a potential marker of the distinction between self- and externally produced sensory consequences. However, very little research has examined whether sensory attenuation distinguishes self- from partner-produced sensory consequences in joint action contexts. The current study examined whether sensory attenuation of the auditory N1 or P2 ERPs distinguishes self- from partner-produced tones when pairs of people coordinate their actions to produce tone sequences that match a metronome pace. We did not find evidence of auditory N1 attenuation for either self- or partner-produced tones. Instead, the auditory P2 was attenuated for self-produced tones compared to partner-produced tones within the joint action. These findings indicate that self-specific attenuation of the auditory P2 differentiates the sensory consequences of one's own from others' actions during joint action. These findings also corroborate recent evidence that N1 attenuation may be driven by general rather than action-specific processes and support a recently proposed functional dissociation between auditory N1 and P2 attenuation.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Foundation for Innovation

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3