A Molecular Mechanism for Probabilistic Bet-hedging and its Role in Viral Latency

Author:

Chaturvedi Sonali,Klein Jonathan,Vardi Noam,Bolovan-Fritts Cynthia,Wolf Marie,Du Kelvin,Mlera Luwanika,Calvert Meredith,Moorman Nathaniel J.,Goodrum Felicia,Huang Bo,Weinberger Leor S.

Abstract

ABSTRACTProbabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms underlying bet-hedging remain unclear. Here, we report that large variability in protein abundance within individual herpesvirus virion particles enables probabilistic bet hedging between viral replication and latency. Super-resolution imaging of individual virions of the human herpesvirus cytomegalovirus (CMV) showed that virion-to-virion levels of pp71 tegument protein—the major viral transactivator protein—exhibit extreme variability. This super-Poissonian tegument variability promoted alternate replicative strategies: high virion pp71 levels enhance viral replicative fitness but, strikingly, impede silencing, whereas low virion pp71 levels reduce fitness but promote silencing. Overall, the results indicate that stochastic tegument packaging provides a mechanism enabling probabilistic bet hedging between viral replication and latency.SIGNIFICANCEProbabilistic bet hedging is a generalized diversification strategy to maximize fitness in unpredictable environments, and has been proposed as an evolutionary basis for herpesvirus latency. However, the molecular mechanisms enabling probabilistic bet hedging have remained elusive. Here, we find that the human herpesvirus cytomegalovirus—a major cause of birth defects and transplant failures—utilizes stochastic variability in the abundance of a protein packaged into individual viral particles to enable probabilistic bet hedging between alternate viral states.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3