Redefining De Novo Gammaherpesvirus Infection Through High-Dimensional, Single-Cell Analysis of Virus and Host

Author:

Berger Jennifer N.ORCID,Sanford BridgetORCID,Kimball Abigail K.ORCID,Oko Lauren M.ORCID,Kaspar Rachael E.ORCID,Niemeyer Brian F.ORCID,Jones Kenneth L.ORCID,Clambey Eric T.ORCID,van Dyk Linda F.ORCID

Abstract

SUMMARYVirus infection is frequently characterized using bulk cell populations. How these findings correspond to infection in individual cells remains unclear. Here, we integrate high-dimensional single-cell approaches to quantify viral and host RNA and protein expression signatures using de novo infection with a well-characterized model gammaherpesvirus. While infected cells demonstrated genome-wide transcription, individual cells revealed pronounced variation in gene expression, with only 9 of 80 annotated viral open reading frames uniformly expressed in all cells, and a 1000-fold variation in viral RNA expression between cells. Single-cell analysis further revealed positive and negative gene correlations, many uniquely present in a subset of cells. Beyond variation in viral gene expression, individual cells demonstrated a pronounced, dichotomous signature in host gene expression, revealed by measuring host RNA abundance and post-translational protein modifications. These studies provide a resource for the high-dimensional analysis of virus infection, and a conceptual framework to define virus infection as the sum of virus and host responses at the single-cell level.HIGHLIGHTSCyTOF and scRNA-seq identify wide variation in gene expression between infected cells.Host RNA expression and post-translational modifications stratify virus infection.Single cell RNA analysis reveals new relationships in viral gene expression.Simultaneous measurement of virus and host defines distinct infection states.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3