An ex vivo model of Toxoplasma recrudescence

Author:

Goerner Amber L.,Vizcarra Edward A.,Hong David D.,Bergersen Kristina V.,Alvarez Carmelo A.,Talavera Michael A.,Wilson Emma H.,White Michael W.

Abstract

ABSTRACTToxoplasma has been a useful parasite model for decades because it is relatively easy to genetically modify and culture, however, attempts to generate and study the recrudescence of tissue cysts have come up short with lab-adapted strains generating low numbers of tissue cysts in vivo. Here we have established a new model of Toxoplasma recrudescence using bradyzoites from an unadapted Type II ME49 strain (ME49EW) isolated from murine brain tissue. Ex vivo bradyzoite infection of fibroblasts and astrocytes produced sequential tachyzoite growth stages; a fast-growing stage was followed by formation of a slower-growing stage. In astrocytes, but not in fibroblasts, bradyzoites also initiated a second recrudescent pathway involving bradyzoite to bradyzoite replication. Intraperitoneal infections of mice with either bradyzoites or the fast-growing tachyzoite stage efficiently disseminated to brain tissue leading to high numbers of tissue cysts, while infections with the slow-growing tachyzoite stage were largely retained in the peritoneum. Poor infection and cyst formation of slow-growing tachyzoites was reversible by serial tissue cyst passage, while the poor tissue cyst formation of lab-adapted tachyzoites was not reversible by these approaches. To distinguish strain developmental competency, we identified Toxoplasma genes highly expressed in ME49EW in vivo tissue cysts and developed a qPCR approach that differentiates immature from mature bradyzoites. In summary, the results presented describe a new ex vivo bradyzoite recrudescence model that fully captures the growth and developmental processes during toxoplasmosis reactivation in vivo opening the door to the further study of these important features of the Toxoplasma intermediate life cycle.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3