Detection of a multi-disease biomarker in Saliva with Graphene Field Effect Transistors

Author:

Kumar NarendraORCID,Gray MasonORCID,Ortiz-Marquez Juan C.,Weber Andrew,Desmond Cameron R.,Argun Avni,van Opijnen Tim,Burch Kenneth S.ORCID

Abstract

AbstractHuman carbonic anhydrase 1 (CA1) has been suggested as a biomarker for identification of several diseases including cancers, pancreatitis, diabetes, and Sjogren’s syndrome. However, the lack of a rapid, cheap, accurate, and easy-to-use quantification technique has prevented widespread utilization of CA1 for practical clinical applications. To this end, we present a label-free electronic biosensor for detection of CA1 utilizing highly sensitive graphene field effect transistors (G-FETs) as a transducer and specific RNA aptamers as a probe. The binding of CA1 with aptamers resulted in a positive shift in Dirac voltage VD of the G-FETs, the magnitude of which depended on target concentration. These aptameric G-FET biosensors showed the binding affinity (KD) of ∼ 2.3 ng/ml (70 pM), which is four orders lower than that reported using a gel shift assay. This lower value of KD enabled us to achieve a detection range (10 pg/ml - 100 ng/ml) which is well in line with the clinically relevant range. These highly sensitive devices allowed us to further prove their clinical relevance by successfully detecting the presence of CA1 in human saliva samples. Utilization of this label-free biosensor could facilitate the early stage identification of various diseases associated with changes in concentration of CAs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3