Abstract
AbstractBetween 6-20% of the cellular proteome is under circadian control to tune cell function with cycles of environmental change. For cell viability, and to maintain volume within narrow limits, the osmotic pressure exerted by changes in the soluble proteome must be compensated. The mechanisms and consequences underlying compensation are not known. Here, we show in cultured mammalian cells and in vivo that compensation requires electroneutral active transport of Na+, K+, and Cl− through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes alter their electrical activity at different times of the day. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献