Electric-field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2

Author:

Ramachandran AshwinORCID,Huyke Diego A.,Sharma Eesha,Sahoo Malaya K.,Banaei Niaz,Pinsky Benjamin A.ORCID,Santiago Juan G.ORCID

Abstract

AbstractThe rapid spread of COVID-19 across the world has revealed major gaps in our ability to respond to new virulent pathogens. Rapid, accurate, and easily configurable molecular diagnostic tests are imperative to prevent global spread of new diseases. CRISPR-based diagnostic approaches are proving to be useful as field-deployable solutions. In a basic form of this assay, the CRISPR-Cas12 enzyme complexes with a synthetic guide RNA (gRNA). This complex is activated when it highly specifically binds to target DNA, and the activated complex non-specifically cleaves single-stranded DNA reporter probes labeled with a fluorophore-quencher pair. We recently discovered that electric field gradients can be used to control and accelerate this CRISPR assay by co-focusing Cas12-gRNA, reporters, and target. We achieve an appropriate electric field gradient using a selective ionic focusing technique known as isotachophoresis (ITP) implemented on a microfluidic chip. Unlike previous CRISPR diagnostic assays, we also use ITP for automated purification of target RNA from raw nasopharyngeal swab sample. We here combine this ITP purification with loop-mediated isothermal amplification, and the ITP-enhanced CRISPR assay to achieve detection of SARS-CoV-2 RNA (from raw sample to result) in 30 min for both contrived and clinical nasopharyngeal swab samples. This electric field control enables a new modality for a suite of microfluidic CRISPR-based diagnostic assays.Significance statementRapid, early-stage screening is especially crucial during pandemics for early identification of infected patients and control of disease spread. CRISPR biology offers new methods for rapid and accurate pathogen detection. Despite their versatility and specificity, existing CRISPR-diagnostic methods suffer from the requirements of up-front nucleic acid extraction, large reagent volumes, and several manual steps—factors which prolong the process and impede use in low resource settings. We here combine on-chip electric-field control in combination with CRIPSR biology to directly address these limitations of current CRISPR-diagnostic methods. We apply our method to the rapid detection of SARS-CoV-2 RNA in clinical samples. Our method takes 30 min from raw sample to result, a significant improvement over existing diagnostic methods for COVID-19.

Publisher

Cold Spring Harbor Laboratory

Reference14 articles.

1. V. M. Corman , et al., Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance (2020) https:/doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.

2. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (2020).

3. J. P. Broughton , et al., CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. (2020) https:/doi.org/10.1038/s41587-020-0513-4.

4. J. Joung , et al., Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv (2020).

5. C. Eid , J. G. Santiago , Isotachophoresis applied to biomolecular reactions. Lab Chip (2018) https:/doi.org/10.1039/c7lc00852j.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3