Multiplex Solid-Phase RPA Coupled CRISPR-Based Visual Detection of SARS-CoV-2

Author:

Qin XiaochenORCID,Zhou YuyuanORCID,Paul RatulORCID,Wu Yue,Liu YalingORCID

Abstract

AbstractCOVID-19 has challenged the world’s public health and led to over 4.5 million deaths. A rapid, sensitive, and cost-effective point-of-care virus detection device is crucial to the control and surveillance of the contagious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. Here we demonstrate a solid phase isothermal recombinase polymerase amplification coupled CRISPR-based (spRPA-CRISPR) assay for on-chip multiplexed, sensitive and visual COVID-19 DNA detection. By targeting the SARS-CoV-2 structure protein encoded genomes, two specific genes were simultaneously detected with the control sample without cross-interaction with other sequences. The endpoint signal can be directly visualized for rapid detection of COVID-19. The amplified target sequences were immobilized on the one-pot device surface and detected using the mixed Cas12a-crRNA collateral cleavage of reporter released fluorescent signal when specific genes were recognized. The system was tested with samples of a broad range of concentrations (20 to 2×105 copies) and showed analytical sensitivity down to 20 copies per reaction. Furthermore, a low-cost LED UV flashlight (∼$12) was used to provide a visible SARS-CoV-2 detection signal of the spRPA-CRISPR assay which could be purchased online easily. Thus, our platform provides a sensitive and easy-to-read multiplexed gene detection method with the capacity to specifically identify low concentration genes. Similar CRISPR biosensor chips can support a broad range of applications such as HPV DNA detection, influenza SARS-CoV-2 multiplex detection, and other infectious disease testing assays.HighlightsA commercially available UV flashlight excited CRISPR-Cas12a based visual sensor combined with solid-phase RPAThe developed assay could detect SARS-CoV-2 down to 20 copies with no signal crosswalkThis multiplexed on-chip virus detection system would provide great insight for detecting and differentiating SARS-CoV-2 from other viral infections with a single sample simultaneously.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3