Children’s Hospital Los Angeles COVID-19 Analysis Research Database (CARD) - A Resource for Rapid SARS-CoV-2 Genome Identification Using Interactive Online Phylogenetic Tools

Author:

Shen Lishuang,Maglinte Dennis,Ostrow Dejerianne,Pandey Utsav,Bootwalla Moiz,Ryutov Alex,Govindarajan Ananthanarayanan,Ruble David,Han Jennifer,Triche Timothy J.,Bard Jennifer Dien,Biegel Jaclyn A.,Judkins Alexander R.,Gai Xiaowu

Abstract

AbstractEffective response to the Coronavirus Disease 2019 (COVID-19) pandemic requires genomic resources and bioinformatics tools for genomic epidemiology and surveillance studies that involve characterizing full-length viral genomes, identifying origins of infections, determining the relatedness of viral infections, performing phylogenetic analyses, and monitoring the continuous evolution of the SARS-CoV-2 viral genomes. The Children’s Hospital, Los Angeles (CHLA) COVID-19 Analysis Research Database (CARD) (https://covid19.cpmbiodev.net/) is a comprehensive genomic resource that provides access to full-length SARS-CoV-2 viral genomes and associated meta-data for over 30,000 (as of May 20, 2020) isolates collected from global sequencing repositories and the sequencing performed at the Center for Personalized Medicine (CPM) at CHLA. Reference phylogenetic trees of global and USA viral isolates were constructed and are periodically updated using selected high quality SARS-CoV-2 genome sequences. These provide the baseline and analytical context for identifying the origin of a viral infection, as well as the relatedness of SARS-CoV-2 genomes of interest. A web-based and interactive Phylogenetic Tree Browser supports flexible tree manipulation and advanced analysis based on keyword search while highlighting time series animation, as well as subtree export for graphical representation or offline exploration. A Virus Genome Tracker accepts complete or partial SARS-CoV-2 genome sequence, compares it against all available sequences in the database (>30,000 at time of writing), detects and annotates the variants, and places the new viral isolate within the global or USA phylogenetic contexts based upon variant profiles and haplotype comparisons, in a few seconds. The generated analysis can potentially aid in genomic surveillance to trace the transmission of any new infection. Using CHLA CARD, we demonstrate the identification of a candidate outbreak point where 13 of 31 CHLA internal isolates may have originated. We also discovered multiple indels of unknown clinical significance in the orf3a gene, and revealed a number of USA-specific variants and haplotypes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3