Biological networks and GWAS: comparing and combining network methods to understand the genetics of familial breast cancer susceptibility in the GENESIS study

Author:

Climente-González HéctorORCID,Lonjou ChristineORCID,Lesueur FabienneORCID,Stoppa-Lyonnet DominiqueORCID,Andrieu Nadine,Azencott Chloé-AgatheORCID,

Abstract

AbstractNetwork approaches to disease use biological networks, which model functional relationships between the molecules in a cell, to generate hypotheses about the genetics of complex diseases. Several among them jointly consider gene scores, representing the association between each gene and the disease, and the biological context of each gene, modeled by a network. Here, we study six such network methods using gene scores from GENESIS, a genome-wide association study (GWAS) on French women with non-BRCA familial breast cancer. We provide a critical comparison of these six methods, discussing the impact of their mathematical formulation and parameters. Using a biological network yields more compelling results than standard GWAS analyses. Indeed, we find significant overlaps between our solutions and the genes identified in the largest GWAS on breast cancer susceptibility. We further propose to combine these solutions into a consensus network, which brings further insights. The consensus network contains COPS5, a gene related to multiple hallmarks of cancer, and 14 of its neighbors. The main drawback of network methods is that they are not robust to small perturbations in their inputs. Therefore, we propose a stable consensus solution, formed by the most consistently selected genes in multiple subsamples of the data. In GENESIS, it is composed of 68 genes, enriched in known breast cancer susceptibility genes (BLM, CASP8, CASP10, DNAJC1, FGFR2, MRPS30, and SLC4A7, P-value = 3 × 10 4) and occupying more central positions in the network than most genes. The network is organized around CUL3, which is involved in the regulation of several genes linked to cancer progression. In conclusion, we showed how network methods help overcome the lack of statistical power of GWAS and improve their interpretation. Project-agnostic implementations of all methods are available at https://github.com/hclimente/gwas-tools.Author summaryGenome-wide association studies (GWAS) scan thousands of genomes to identify variants associated with a complex trait. Over the last 15 years, GWAS have advanced our understanding of the genetics of complex diseases, and in particular of hereditary cancers. However, they have led to an apparent paradox: the more we perform such studies, the more it seems that the entire genome is involved in every disease. The omnigenic model offers an appealing explanation: only a limited number of core genes are directly involved in the disease, but gene functions are deeply interrelated, and so many other genes can alter the function of the core genes. These interrelations are often modeled as networks, and multiple algorithms have been proposed to use these networks to identify the subset of core genes involved in a specific trait. This study applies and compares six such network methods on GENESIS, a GWAS dataset for familial breast cancer in the French population. Combining these approaches allows us to identify potentially novel breast cancer susceptibility genes and provides a mechanistic explanation for their role in the development of the disease. We provide ready-to-use implementations of all the examined methods.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3