martini: an R package for genome-wide association studies using SNP networks

Author:

Climente-González HéctorORCID,Azencott Chloé-AgatheORCID

Abstract

AbstractSystems biology shows that genes related to the same phenotype are often functionally related. We can take advantage of this to discover new genes that affect a phenotype. However, the natural unit of analysis in genome-wide association studies (GWAS) is not the gene, but the single nucleotide polymorphism, or SNP. We introduce martini, an R package to build SNP co-function networks and use them to conduct GWAS. In SNP networks, two SNPs are connected if there is evidence they jointly contribute to the same biological function. By leveraging such information in GWAS, we search SNPs that are not only strongly associated with a phenotype, but also functionally related. This, in turn, boosts discovery and interpretability. Martini builds such networks using three sources of information: genomic position, gene annotations, and gene-gene interactions. The resulting SNP networks involve hundreds of thousands of nodes and millions of edges, making their exploration computationally intensive. Martini implements two network-guided biomarker discovery algorithms based on graph cuts that can handle such large networks: SConES and SigMod. They both seek a small subset of SNPs with high association scores with the phenotype of interest and densely interconnected in the network. Both algorithms use parameters that control the relative importance of the SNPs’ association scores, the number of SNPs selected, and their interconnection. Martini includes a cross-validation procedure to set these parameters automatically. Lastly, martini includes tools to visualize the selected SNPs’ network and association properties. Martini is available on GitHub (hclimente/martini) and Bioconductor (martini).

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3